Unsupervised Classification of Dialogue Acts using a Dirichlet Process Mixture Model
نویسندگان
چکیده
In recent years Dialogue Acts have become a popular means of modelling the communicative intentions of human and machine utterances in many modern dialogue systems. Many of these systems rely heavily on the availability of dialogue corpora that have been annotated with Dialogue Act labels. The manual annotation of dialogue corpora is both tedious and expensive. Consequently, there is a growing interest in unsupervised systems that are capable of automating the annotation process. This paper investigates the use of a Dirichlet Process Mixture Model as a means of clustering dialogue utterances in an unsupervised manner. These clusters can then be analysed in terms of the possible Dialogue Acts that they might represent. The results presented here are from the application of the Dirichlet Process Mixture Model to the Dihana corpus.
منابع مشابه
Analysis of the Dirichlet Process Mixture Model with Application to Dialogue Act Classification
Recognition of user intentions is one of the most challenging problems in the design of dialogue systems. These intentions are usually coded in terms of Dialogue Acts (Following Austin’s work on speech act theory), where a functional role is assigned to each utterance of a conversation. Manual annotation of dialogue acts is both time consuming and expensive, therefore there is a huge interest i...
متن کاملUnsupervised Classification of Functions using Dirichlet Process Mixtures of Gaussian Processes
This technical report presents a novel algorithm for unsupervised clustering of functions. It proceeds by developing the theory of unsupervised classification in mixtures from the familiar mixture of Gaussian distributions, to the infinite mixture of Gaussian processes. At each stage a both a theoretical and an algorithmic exposition are presented. We consider unsupervised classification (or cl...
متن کاملUnsupervised Classification of Student Dialogue Acts with Query-Likelihood Clustering
Dialogue acts model the intent underlying dialogue moves. In natural language tutorial dialogue, student dialogue moves hold important information about knowledge and goals, and are therefore an integral part of providing adaptive tutoring. Automatically classifying these dialogue acts is a challenging task, traditionally addressed with supervised classification techniques requiring substantial...
متن کاملUnsupervised classification and analysis of objects described by nonparametric probability distributions
Various objects can be summarily described by probability distributions: groups of raw data, paths of stochastic processes, neighborhoods of an image pixel and so on. Dealing with nonparametric distributions, we propose a method for classifying such objects by estimating a finite mixture of Dirichlet distributions when the observed distributions are assumed to be outcomes of a finite mixture of...
متن کاملCross-Categorization: A Method for Discovering Multiple Overlapping Clusterings
Model-based clustering techniques, including inference in Dirichlet process mixture models, have difficulty when different dimensions are best explained by very different clusterings. We introduce cross-categorization, an unsupervised learning technique that overcomes this basic limitation. Based on MCMC inference in a novel nonparametric Bayesian model, cross-categorization automatically disco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009